Доработка алгоритма прогнозирования объема продаж
Магистрант кафедры "Прикладная экономика" Донецкого Национального Университета (Украина)
iscariot@rambler.ru
Столкнувшись с методикой предложенной Кошечкиным С.А., был крайне признателен автору, поскольку аналогичных материалов не так уж и много. Особенно интересно было изучение сезонных колебаний автором статьи, т.к. предприятие, работником которого я являюсь, продает самый что ни на есть сезонный товар – строительные материалы.
Методики простого и в то же время адекватного прогнозирования на сегодняшний день действительно освещены в научных материалах в небольшом количестве. Одни просты до такой степени, что моделируют ситуацию крайне далекую от реальной. А другие настолько сложны, что период их применения и сбора необходимой информации значительно превышает все установленные начальством сроки.
Методика, предложенная Кошечкиным С.А., сочетает в себе и простоту, и адекватность анализа. Особенно важно отметить актуальность работы в MS Excel, как наиболее доступном и простом для понимания программном продукте.
Однако изучение алгоритма автора и внедрение его в работе предприятия показало на некоторые недоработки. О них и пойдет речь в данной статье.
Пропустим вступление об аддитивных и мультипликативных моделях, т.к. оно представляет теоретическую базу, с которой можно ознакомиться в самой статье и начнем с анализа алгоритма прогнозирования объемов продаж. В результате анализа алгоритма, в первой части статьи будет предложен его доработанный вариант.
Вторым разделом статьи будет использование доработанного алгоритма на примере, который предоставил Кошечкин С.А.
1. Определение тренда . Первым шагом в построении модели является выбор линии тренда. Автор утверждает, что выбор полиномиальной линии тренда дает наиболее точную модель, опираясь на коэффициент детерминации, как критерий оценки всей модели в целом. Однако он пропускает тот факт, что точность модели зависит не только от ошибок моделирования тренда, но и от ошибок моделирования сезонных колебаний. Другими словами, модель F=T+S+E (F – значения модели, T – значения линии тренда, S – значения сезонной компоненты, E – величина ошибок) зависит от двух ключевых параметров Т и S, а не только от Т, как утверждает автор. Параметр Е определяет доверительный интервал модели и дает возможность анализировать точность построенной модели.
Выбор наиболее точной линии тренда (Т) с высоким коэффициентом детерминации не является достаточным условием построения оптимальной модели. При росте коэффициента детерминации уменьшается ошибка тренда, но не модели в целом. Таким образом, автор отсекает альтернативные модели, утверждая, что они заранее менее точны, опираясь при этом на данные анализа одного параметра всей модели – тренда (T).
2. Определение величин сезонной компоненты.Необходимо учитывать также ошибки сезонных колебаний (S), которые характеризуются суммой средних величин сезонной компоненты. Чем дальше от 0 значение суммы колебаний сезонной компоненты, тем больше ошибка параметра S. Кстати говоря, автор сообщает о том, что перечень товаров, относящихся к сезонным достаточно велик, но не рассказывает о том, как определить относится ли товар, продаваемый предприятием, к сезонному.
Таким образом, выбирая линию тренда, характеризующую общую тенденцию развития изучаемого явления, необходимо также рассчитывать сезонную компоненту (S) и смотреть на сколько сильно сумма средних значений S отклоняется от 0. Если эта величина близка к 0, то можно утверждать, что продажи действительно имеют сезонный характер и товар, следовательно, можно называть сезонным.
Следующим упущением автора является отсутствие изучения периода сезонных колебаний. С одной стороны – специалисты сами знают: когда начинают расти продажи, а когда падать, но с другой – не у всех товаров сезонные колебания явно выражены. Кроме того, мнение эксперта еще точнее и убедительнее, когда оно подтверждено конкретными данными.
Итак, если мы уже определили, что в модели существует сезонность (сумма значений S близка к 0), то период сезонности рассчитывается как средняя арифметическая между количеством отрицательных и положительных значений сезонной компоненты.
3. Расчет ошибок модели. Изучив поведение сезонной компоненты можно переходить на следующий этап моделирования – расчет ошибок построенной модели. Ошибки рассчитываются по формуле:
E=F-T-S,
при этом вместо значений F подставляются фактические значения объемов продаж.
После нахождения среднеквадратической ошибки модели мы можем делать вывод о точности модели в целом.
4.Построение прогноза. Когда мы определили самую точную модель мы можем перейти на этап прогнозирования, который также описан автором не полностью.
Ведь задача была поставлена в статье «составить прогноз продаж продукции на следующий год по месяцам». А результат, полученный после прогнозирования, характеризуется одним числом. Следовательно, задача, поставленная самим автором, не решена в полном объеме.
Существует также ряд неясностей в ходе дальнейшего прогнозирования:
Почему взяты данные за январь (Fф t-1=2 361), тогда как оба исследуемых периода начинаются с июля месяца.
Как и кем определяется константа сглаживанияа. Ведь экспертом, работающим над данной проблемой, является сам автор. А, следовательно, необходим инструментарий определения данной величины.
Почему не описан инструментарий получения данных доверительного интервала (± 7,8 (руб.)).
Какие «все возможные сценарии прогноза» автор имеет в виду: те которые зависят от константы сглаживания, или те, которые определяются альтернативными моделями.
Таким образом, автором допущены ошибки использования собственного алгоритма. Эти ошибки позволяют сделать вывод о его несовершенстве или о недостаточной конкретизации самого алгоритма. При этом, следует учесть, что основная идея алгоритма, методики и последовательность действий, выбранные автором, абсолютно верны. Следовательно, доработки требует только алгоритм.
С учетом описанных выше недостатков, можно предположить, что алгоритм должен иметь такой вид:
Таблица 1. Алгоритм прогнозирования объемов продаж.
№ |
Рассчитываемые показатели |
Критерий оценки |
Значение к которому стремиться критерий оценки |
1. Построение модели F=T+S+E |
|||
1.1. |
Определение трендов, для построения альтернативных моделей (T1, T2, T3 …) |
Количество |
Чем больше, тем правильнее будет выбор |
1.2. |
Определение уравнений линий трендов (вид, который принимает T1, T2, T3 …, в зависимости от величин объема продаж) |
Коэффициент детерминации |
1,00 |
1.3. |
Определение метода расчета сезонной компоненты (в нашем случае это расчет средней арифметической) |
Наличие данных |
Максимальное количество наблюдаемых периодов (минимум=2) |
1.4. |
Определение величин сезонной компоненты (S) |
Сумма средних значений колебаний |
0,00 |
1.5. |
Определение ошибок модели (E) |
СКО (среднеквадратическое отклонение) для каждого периода |
0,00 |
1.6. |
Определение точности всей модели |
[1- СКО для всей модели]*100% |
100,00% |
1.7. |
Определение доверительного интервала модели |
(F*[1-СКО]; F*[1+СКО]) |
0,00% |
2. Построение прогноза |
|||
2.1. |
Определение прогнозных значений |
Фактическое значение будущего периода |
Фактическое значение будущего периода (проверка будет осуществлена только по достижении периода) |
2.2. |
Определение константы сглаживания |
||
2.3. |
Корректировка прогнозных значений, с использованием экспоненциального сглаживания |
Из таблицы видно, что алгоритм не претерпел существенных изменений. Методики, используемые автором в статье, остаются теми же, следовательно, процессуально алгоритм не был усложнен. Однако произведена конкретизация:
- разбивка на этапы моделирования и прогнозирования;
- детализация каждого из этапов;
- определение критериев оценки каждого из этапов;
- определение критических значений критериев оценки. Т.е. чем ближе показатель к величине, указанной в последнем столбце – тем вернее будут модель и прогноз.
С учетом проведенных изменений алгоритма попробует использовать его на примере, предоставленном Кошечкиным С.А.
ПРИМЕР.
Исходные данные: объёмы реализации продукции за два сезона. В качестве исходной информации для прогнозирования была использована информация об объёмах сбыта мороженого “Пломбир” одной из фирм в Нижнем Новгороде. Данная статистика характеризуется тем, что значения объёма продаж имеют выраженный сезонный характер с возрастающим трендом. Исходная информация представлена в табл. 1.
Таблица 2. Фактические объёмы реализации продукции
№п.п. |
Месяц |
Объем продаж (руб.) |
№п.п. |
Месяц |
Объем продаж (руб.) |
1 |
июль |
8174,40 |
13 |
июль |
8991,84 |
2 |
август |
5078,33 |
14 |
август |
5586,16 |
3 |
сентябрь |
4507,20 |
15 |
сентябрь |
4957,92 |
4 |
октябрь |
2257,19 |
16 |
октябрь |
2482,91 |
5 |
ноябрь |
3400,69 |
17 |
ноябрь |
3740,76 |
6 |
декабрь |
2968,71 |
18 |
декабрь |
3265,58 |
7 |
январь |
2147,14 |
19 |
январь |
2361,85 |
8 |
февраль |
1325,56 |
20 |
февраль |
1458,12 |
9 |
март |
2290,95 |
21 |
март |
2520,05 |
10 |
апрель |
2953,34 |
22 |
апрель |
3248,67 |
11 |
май |
4216,28 |
23 |
май |
4637,91 |
12 |
июнь |
8227,569 |
24 |
июнь |
9050,3264 |